利用散热片来增加散热的面积是热管理技术中最常见也是最基本的方式,随着电子器件发热密度增加的趋势,散热的需求日益增加,散热设计的困难度越来越高,所花费的成本也越来越多。举例而言,早期计算机的CPU如286,发热瓦数只有十几瓦,因此只要约3公分高的散热片加低转速风扇就可解决,但是目前计算机的CPU用散热片高度却达到早期的3倍,鳍片数目增加3倍,风扇转速也提升一倍,成本则增加5、6倍以上。虽然新制程及设计技术不断提升,散热片的应用在有限空间的限制下,似乎有渐渐趋向极限的趋势,未来各种不同的冷却技术如传导散热、水冷、冷冻循环以及浸入式沸腾冷却等都可能用来解决散热问题。尽管如此,散热片仍是最经济、最可靠的散热方式,因此如何提升散热片的效率成了很重要的课题。因此为了满足未来电子散热的需求,在散热片的形状、材料及制程上都必须有更新的技术,此外集成其它散热器件的设计方式的也可以增加应用时的效率。本文将介绍散热片的种类及制程,散热片的应用以及未来的设计需求。 散热片的种类。 许多散热片设计由于忽略了制造的概念,使得研发产品的可靠度及成本成为最后批量供应的障碍。由制造方式来看,气冷的散热片可分为下面几种,表一则为制程性能参数的整理。 1. 压印(Stampings)散热片铜片或铝片可用压印的方式制成所需的形状。此种制程成本低,适合批量供应,可用于低热密度的器件。而压印的器件在组装上也有自动化的便利性,因此可进一步降低成本。 2. 挤型(Extrusion)散热片挤型的制造方式是由将材料在高压下强制流入模孔中成形而使得固体转换为等截面的连续长条。挤形是散热片制造中最广泛使用的方式,设备投资的经额中等。可经由横切的方式产生矩形的针状散热片,可产生锯齿状的鳍片以增加10~20%的效能,但会降低挤型的速度。挤型的高宽比限制可高到6,使用特殊模具设计时则可到10的高宽比。 3. 铸造(Casting)散热片将熔化的金属加压到金属模中,以产生精确尺寸的器件。此技术可产生高密度的针状散热片。高的治具费用是最大的成本投资,但适合大量生产的低器件成本可补回此部分。铸造散热片的热传导性会受到固化时气体渗入而产生多孔状而降低。 4. 接着(Bonding)散热片接着散热片将鳍片组装于散热片底部,接着剂对散热片的效率影响很大,如果制造不当,会形成热的阻碍,一般使用导热胶或是焊锡。接着散热片的底部由于需特别加工,因此会使得成本较高,但由于制造技术的提升,以及接着剂的改良,如热导性的铝填充胶等,使得接着散热片的成本降低。此种制程方式可制造高宽比高的散热片,在不增加体积需求下可大量增加冷却效率。 5. 折迭(Folding)散热片折迭散热片将金属片折迭成鳍片数组形状,由于将折迭的金属片藉由焊锡及铜焊接的方式焊接于散热片底部,因此在接口上造成额外的热阻。在制作上的步骤增加,使得成本提升。而制造小间距的鳍片也是困难点。由于增加散热面积,因此散热效率不错。 6. 改良式的铸造(Modified die-casting)散热片此种制造方式是传统铸造方式的延伸,首先将相当薄的压印鳍片数组以间格物隔开,然后以夹具固定,使散热片的底部铸造时将鳍片固定于底部,而形成散热片。此种方式消除了鳍片及底部材料的接口热阻,此种制程可提供高的高宽比。 7. 锻造(Forging)散热片锻造散热片是用非常高的压力敲击(punch)方式将金属材料压入模中使鳍片成形,可能遇到的制程上的问题是材料会阻碍在模子中,使得高度不均一,热锻造比较容易,而冷锻造可制造较密及较强的鳍片。锻造方式的优点包括高强度、较小的表面粗糙度以及材料的均一性等。锻造方式的散热片具有较高的高宽比。 8. 切削(Skiving)散热片这是一种新的散热片制程方式,鳍片用特殊的刀具加工,使得弧状的精密薄片由金属块削出,由于鳍片和金属块是相同材料,因此没有接着散热片或是折迭散热片的缺点。由于制程技术的增进,目前也可制造出高密度的鳍片。目前采用的是6063铝,铜的切削还在实验阶段。由于切削深度可以相当低,鳍片的厚度可以较薄,可以设计较轻性能较高的散热片。 9. 机械加工(Machining)散热片藉由机械加工的方式将材料从金属块中移除以形成鳍片的形状。最常用的方式是在CNC 机器上采用一组切割锯,锯子之间有精密的距离,以切割出鳍片几何形状。由于加工时容易造成鳍片的破坏或卷曲,因此需二次加工。优点是容易自动化,因此未来仍有使用空间。 |